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(57) ABSTRACT 

A neural network circuit is provided having a plurality of 
circuits capable of charge storage. Also provided is a plu 
rality of circuits each coupled to at least one of the plurality 
of charge storage circuits and constructed to generate an 
output in accordance With a neuron transfer function. Each 
of a plurality of circuits is coupled to one of the plurality of 
neuron transfer function circuits and constructed to generate 
a derivative of the output. A Weight update circuit updates 
the charge storage circuits based upon output from the 
plurality of transfer function circuits and output from the 
plurality of derivative circuits. In preferred embodiments, 
separate training and validation netWorks share the same set 
of charge storage circuits and may operate concurrently. The 
validation netWork has a separate transfer function circuits 
each being coupled to the charge storage circuits so as to 
replicate the training netWork’s coupling of the plurality of 
charge storage to the plurality of transfer function circuits. 
The plurality of transfer function circuits may be constructed 
each having a transconductance ampli?er providing differ 
ential currents combined to provide an output in accordance 
With a transfer function. The derivative circuits may have a 
circuit constructed to generate a biased differential currents 
combined so as to provide the derivative of the transfer 
function. 

32 Claims, 5 Drawing Sheets 
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ARTIFICIAL NEURAL NETWORK WITH 
HARDWARE TRAINING AND HARDWARE 

REFRESH 

ORIGIN OF THE INVENTION 

The invention described herein Was made -in the perfor 
mance of Work under a NASA contract, and is subject to the 
provisions of Public LaW 96-517 (35 USC 202) in Which the 
contractor has elected not to retain title. 

BACKGROUND 

Neural netWorks offer a computing paradigm that alloWs 
a nonlinear input/output relationship or transformation to be 
established based primarily on given eXamples of the rela 
tionship rather than a formal analytical knoWledge of its 
transfer function. This paradigm provides for a training of 
the netWork during Which the Weight values of the synaptic 
connections from one layer of neurons to another are 
changed in an iterative manner to successively reduce error 
betWeen actual and target outputs. 

Typically, for neural netWorks to establish the transfor 
mation paradigm, input data generally is divided into three 
parts. TWo of the parts, called training and cross-validation, 
must be such that the corresponding input-output pairs 
(ground truth) are knoWn. During training, the cross 
validation set alloWs veri?cation of the status of the trans 
formation relationship learned by the netWork to ensure 
adequate learning has occurred and to avoid over-learning. 
The third part, termed the validation data, Which may or may 
not include the training and/or the cross-validation data set, 
is the data transformed into output. 

Neural netWorks may be formed With softWare, hardWare, 
or hybrid implementations for training connectionist mod 
els. One draWback With softWare techniques is that, because 
computers eXecute programmed instructions sequentially, 
the iterative process can be inconveniently sloW and require 
vast amounts of computing resources to process the large 
number of connections necessary for most neural netWork 
applications. As such, softWare techniques are not feasible 
for most applications, and in particular, Where computing 
resources are limited and large amounts of information must 
be processed. 

In one approach for analog implementation of a synapse, 
the Weight is stored as a charge on a capacitor. A problem 
With representing a Weight as a stored charge is that charge 
leakage changes the Weight of the connection. Although 
there are several approaches to eliminate charge leakage, 
such as reducing the capacitor’s thermal temperature, or 
increasing its capacitance, they are not practical for most 
applications. As an alternative, an electrically erasable pro 
grammable read only memory or EEPROM may be used. 
Although this eliminates the charge leakage problem, such a 
device is too sloW for high speed learning netWorks. 

Hybrid systems on the other hand, are able to overcome 
the problem of charge leakage associated With capacitively 
stored Weights by controlling training and refresh training 
digitally. In a typical hybrid system, the capacitively stored 
Weight is digitiZed and monitored With digital circuitry to 
determine Whether more training or Whether refresh training 
is necessary. When necessary, the Weight of the neuron is 
refreshed using the digitally stored target Weight. 
A signi?cant draWback With hybrid training and refresh 

approaches is that it is not practical for very large scale 
neural netWorks, Which are necessary for most applications. 

10 

15 

25 

35 

45 

55 

65 

2 
This is because A/D and D/A converters must be used for 
Weight quantiZation. For most training techniques, such as 
Error Back Propagation, Weight quantiZation of each syn 
aptic link requires at least 12 bit precision, or more, to 
provide sufficient resolution for simple problems. Such 
resolution is impractical for most implementations due to 
eXpense and siZe concerns. As such, either the resolution or 
the processing capability of the neural netWork usually is 
sacri?ced. Thus, providing such resolution for each neuron 
of a massive neural netWork makes this approach impracti 
cal for typical applications. 

SUMMARY OF THE PREFERRED 
EMBODIMENTS 

In an embodiment of the present invention, a neural 
netWork circuit is provided having a plurality of circuits 
capable of charge storage. Also provided is a plurality of 
circuits each coupled to at least one of the plurality of charge 
storage circuits and constructed to generate an output in 
accordance With a neuron transfer function, along With a 
plurality of circuits, each coupled to one of the plurality of 
neuron transfer function circuits and constructed to generate 
a derivative of the output. A Weight update circuit updates 
the charge storage circuits based upon output from the 
plurality of transfer function circuits and output from the 
plurality of derivative circuits. 

In preferred embodiments, a training netWork and a 
validation netWork share the same set of charge storage 
circuits and may operate concurrently. The training netWork 
has a plurality of circuits capable of charge storage and a 
plurality of transfer function circuits each being coupled to 
at least one of the charge storage circuits. In addition, the 
training netWork has a plurality of derivative circuits each 
being coupled to one of the plurality of transfer function 
circuits and constructed to generate a derivative of an output 
of the one transfer function circuit. The validation netWork 
has a plurality of transfer function circuits each being 
coupled to the plurality of charge storage circuits so as to 
replicate the training netWork’s coupling of the plurality of 
charge storage to the plurality of transfer function circuits. 
Embodiments of each of the plurality of transfer function 

circuits may be constructed having a transconductance 
ampli?er. The transconductance ampli?er is constructed to 
provide differential currents I1 and I2 from an input current 
Ii” and to combine the differential currents to provide an 
output in accordance With a transfer function. In such 
embodiments each of the plurality of derivative circuits may 
have a circuit constructed to generate a biased I1 and a 
biased I2, combine the biased I1 and biased I2, and provide 
an output in accordance With the derivative of the transfer 
function. In a preferred embodiment, in order to provide the 
derivative of the transfer function from the biasing and 
combining circuits and the transconductance ampli?er 
outputs, each of the plurality of derivative circuits has a 
subtraction circuit. 

Apreferred method of the present invention is performed 
by creating a plurality of synaptic Weights by storing charge 
on a plurality of capacitive circuits and generating a plurality 
of neuron outputs in accordance With a transfer function. 
The outputs are generated from the plurality of Weights 
using a plurality of transfer function circuits. The derivative 
of each of the plurality of neuron outputs is generated using 
a plurality of derivative circuits each coupled to one of the 
plurality of transfer function circuits. A neural netWork is 
trained using a plurality of delta Weights Which are gener 
ated using the plurality of transfer function derivatives. 
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Furthermore, in a preferred method, a plurality of synaptic 
weights are established by storing charge on a plurality of 
capacitive circuits using a training network having a plural 
ity of neurons each capable of providing outputs in accor 
dance with a transfer function. The plurality of weights are 
shared with a validating network having a second plurality 
of neurons each capable of providing outputs in accordance 
with the transfer function. With this method cross-validation 
testing or validation testing may be performed using the 
validation network. Also with this method, training the 
neural network and performing the at least one of cross 
validation testing or the validating testing may be performed 
simultaneously. 

Such an approach eliminates the need for digital refresh 
circuitry and allows the advantages of speed, simplicity, and 
accuracy provided by analog storage to be exploited. 

BRIEF SUMMARY OF THE DRAWINGS 

FIG. 1 is a functional block diagram of a preferred 
embodiment in accordance with the present invention. 

FIG. 2 is a ?ow diagram of a preferred method in 
accordance with the present invention. 

FIG. 3 illustrates weights and neuron coupling in accor 
dance with a preferred embodiment of the present invention. 

FIG. 4 is a schematic diagram of a neuron and derivative 
circuit in accordance with a preferred embodiment of the 
present invention. 

FIG. 5A is empirical data of the transfer function gener 
ated by embodiments of the present invention. 

FIG. 5B shows an ideal derivative of the transfer func 
tions of FIG. 5A with respect to the input signals. 

FIG. 5C shows simulation data of the derivative of the 
transfer functions of FIG. 5A of the derivative circuit of FIG. 
4. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENTS AND METHODS 

OF THE PRESENT INVENTION 

Preferred embodiments of the present invention provide 
on-chip learning using an analog approach to capacitor 
training and refresh training. Such an approach eliminates 
the need for digital refresh circuitry and allows the advan 
tages of speed, simplicity, and accuracy provided by analog 
storage to be exploited. Further, preferred embodiments 
incorporating the on-chip learning allow hardware imple 
mentation of training, cross-validation, and validation func 
tions. 

Turning to FIG. 1, in a preferred embodiment of the 
present invention a neural network is provided having two 
similar networks, one for training 100, and one for valida 
tion 200. With this embodiment, two distinct networks, 
training 100 and validation 200, share the same weights 110 
between them. In this embodiment, the interconnection of 
weights 110 and neurons 160 of the training network 100 is 
replicated in the validation network 200 by sharing weights 
110 and using neurons 260. Thus, in a preferred 
embodiment, the interconnection of weights 110 and neu 
rons 160 is mirrored in the validation network 200. 

In general, training involves summing the weights 110 of 
a layer, applying the summed weights 110 to a transfer 
function 160, providing the transfer function output either to 
a neXt layer as a weighted connection, or providing it for 
comparison with target data 140 to produce an error signal 
6 at 150 used to train the network 100. 

During training iterations, the weight values 110 are 
continuously modulated using an error back propagation 
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4 
type technique. Such a technique uses a means to generate 
delta weights 120 using an algorithm to determine the delta 
weight values necessary to train each of the weights 110. The 
delta weight means 120 uses the error signal 150 along with 
the derivative F‘ of the output of each neuron transfer 
function 160 to train each of the weights 110, or to train new 
hidden weights, not shown. The weights are updated based 
on the delta weight algorithm using a weight update circuit 
as is known in the art. 

The validating network 200 performs cross-validating and 
validation testing. The validating network 200 performs 
cross-validating using a cross-validation data set 205 while 
the training network 100 is being trained using a training set 
105. Cross-validating controls learning and freeZing the 
learning rate of the training network 100 based on a prede 
termine threshold value to preventing over learning. 

After learning is complete, the validating network 200 is 
used for validation testing of a validation or test data set 215, 
while refresh training of the previously learned weights 
occurs through the training network 100. Refresh training 
begins if the weights fall below a predetermined threshold of 
their trained values. As such, the weights are refreshed 
trained without having to use the original training data set 
105. As a result of the separate training and validating 
networks 100 and 200, test set validation testing may occur 
concurrently with refresh training. 

Thus, in implementation, one of the circuits is the learning 
network 100 which is computing the delta weights and 
updating them in real time. This network 100 learns the new 
and incomplete training patterns, and also enhances and 
recovers the weights which can be degraded by charge 
leakage or the failure of some components. Another circuit 
is, in parallel, the validating network 200 which is working 
simultaneously either to cross-validate or to validate data 
sets 205 or 215. Since two networks 100 and 200 are sharing 
the same weight set in parallel, the differences between the 
two networks 100 and 200 comprise multipliers (not 
shown), hidden neurons 160a and 260a, and output neurons 
160C and 260C. 

With the validating network 200 in parallel, the over 
learning state can be detected by validating the cross 
validation data set 205 without interrupting the learning 
process. In addition, the speed of learning is not slowed 
down whether it is learning new weights in a new hidden 
unit, or learning all the new and old weights in new and old 
hidden units simultaneously. Because the speed of learning 
does not have an effect in the weight space, the method and 
circuit of preferred embodiment of the present invention 
provides learning new and old weight components simulta 
neously. Therefore, potentially, the learning network 100 is 
able to obtain the optimal trajectory since it can learn whole 
weight space repeatedly. 

FIG. 2 illustrates a functional ?ow of training, cross 
validating, and test set validating. With this method, weight 
values are calculated by a pseudo-inverse technique 500 and 
downloaded 600. A training data set 1100 is input to the 
training network 1000. The training data set 1100 may also 
be supplied to the validation network 2000 as the cross 
validation data set 2100 of the validation network 2000. The 
output of the cross-validation data set 2100 is compared to 
a target data set to provide cross-validation error signals. The 
cross-validation error signals are compared to a threshold 
value in block 2200 to determine the learning state of the 
training network 1000. If the cross-validation error is less 
than the threshold level the learning rate eta is froZen 1600 
to prevent over learning. After the learning rate eta is froZen, 
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test set validation 2300 may be performed. If the cross 
validation errors are not less than the threshold, the learning 
rate eta is reduced 1200 using the training data set 1100. 

After the learning rate is either reduced 1200 or froZen 
1600, delta Weights are generated 1300. To determine 
Whether a neW hidden layer is necessary, the learning rate eta 
is compared to a threshold value 1400. If the comparison 
1400 indicates that eta is greater than the threshold, no neW 
hidden layer of neurons is necessary so the delta Weights are 
applied to existing Weights of the training data set 1100. If 
the comparison 1400 indicates that eta is less than the 
threshold, a neW hidden layer of neurons is added 1500 and 
the delta Weights are applied to the neWly formed hidden 
layer. 

Turning to FIG. 3, the training netWork 100 of FIG. 1 may 
have a Cascade Back Propagation architecture, such as is 
knoWn in the art and disclosed in Analog 3-D Neuroproces 
sor for Fast Frame Focal Plane Image Processing, by 
Duong et al., printed in The Industrail Electronics 
Handbook, pp. 990—1002, CRC Press, Boca Raton, Fla., 
1996, Library of Congress Card Number 96-3070, herein 
incorporated by reference in its entirety. 

The Cascade Back Propagation is a gradient descent 
technique of supervised learning Which combines the good 
features of Back Propagation and Cascade Correlation. One 
advantage of such an approach is that a cascade type 
architecture is more suitable for hardWare learning imple 
mentations because it does not require ?xing the number of 
hidden connections before learning begins. This type learn 
ing architecture alloWs sequential addition of a neW hidden 
neuron 160b to a previously formed hidden neuron 160a if 
based on the level of learning rate. In hardWare 
implementation, a threshold level is used to add a neW 
hidden neuron 160b When the learning rate falls beloW the 
threshold level as discussed above. As such, combining 
these techniques alloWs a mathematical model for Back 
Propagation Which uses a Well studied gradient descent for 
learning and avoids ?xing, a priori, the number of neurons 
in the hidden layer. 

In this method, the Weights 110 betWeen the input layer 
and the output layer 230 are ?rst calculated by using a 
pseudo-inverse technique. Thus, the netWork is assigned the 
best set of Weights that represents the best ?tting hyperplane 
in quadratic energy form betWeen input layer and output 
layer for the output energy surface. In some cases, the best 
?tting hyperplane may not be good enough. This is true 
especially When the solution is not linearly separable. Based 
upon this output surface then, the netWork is designed to add 
a neW hidden neuron to learn on the error surface. The 

learning occurs continuously as long as the learning rate is 
still above a threshold level. OtherWise, a neW hidden 
neuron is added. When the learning energy reaches a value 
based on a predetermined criteria, the learning rate is froZen. 
Then, Without changing the learning rate, the learning net 
Work keeps learning endlessly in the existing loop. 

Furthermore, the neWly added hidden neuron not only has 
Weighted connections to it from all the inputs, but also 
establishes a neW dimension of inputs Which is formed from 
the previous hidden neurons. With this technique of adding 
neW dimension, the netWork has a chance to get out of a 
local minimum When it is in one. In addition, When the 
learned netWork permutes the order of hidden units of Back 
Propagation architecture, the netWork is unchanged in 
energy level. With this attribute, it is knoWn that there are 
many identical subspaces Which exist in the same netWork of 
Back Propagation. Nevertheless, the same permutation tech 
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6 
nique is not applicable to Cascade Back Propagation archi 
tecture because the hidden units are set orderly in series for 
the cascading technique. Therefore, there exists only one 
subspace, a cone of hypercube, Which is used to learn the 
transformation. Instead of Working in several identical sub 
spaces or cones at the same time by Back Propagation 
architecture, Cascade Back Propagation learns only in one 
cone. Thus, it is expected to provide faster convergence. 

In one implementation of the present invention, a Cascade 
Error Projection algorithm is used. Such an algorithm is 
knoWn in the art and disclosed in Cascade Error 
ProjectioniA Learning Algorithm For Hardware 
Implementation, by T. A. Duong and T. Daud, presented to 
IWANN’99 in Alicante, Spain, Jun. 2—4, 1999, herein incor 
porated by reference in its entirety. With such an algorithm, 
the energy function is de?ned as: 

P (1) 

p11 

The Weight updating betWeen the inputs, including previ 
ously added hidden units, and the neWly added hidden unit 
is calculated as folloWs: 

Awgl(n+ 1) = (2) 

and the Weight updating betWeen hidden unit n+1 and the 
output unit 0 is 

Where 

ix 

m is the number of outputs, 

P is the number of training patterns, 
11 is the learning rate eta, 

error 60p =top —of (n), 
top is the target element for training pattern p, 
oop(n) is the output element 0 of actual output o(n) for 

training pattern p, 
n indicates the number of previously added hidden units, 
f‘op(n)=f‘op denotes the output transfer function deriva 

tive With respect to its input, and 
fhP(n+1) denotes the transfer function of hidden unit n+1. 
With preferred algorithm above, and With other back 

propagation type techniques, the derivative of the neuron 
transfer function of each neuron, evaluated at the neuron 
output value, is required by the learning algorithm to gen 
erate the delta Weight values used to train the netWork. Thus, 
it is desirable that embodiments of the present invention 
provide not only the neuron transfer function output, but also 
its derivative, in real time, With respect to a neuron input 
signal. 
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Thus, the preferred embodiment of the present invention 
provides a transconductance ampli?er designed locally as a 
neuron to obtain a transfer function and its derivative With 

respect to an input signal. In general, to accomplish this, 
inputs X and AX are supplied to the neuron, Where X is the 
sum of the Weights to the neuron and AX is a small applied 
bias. From these inputs, the neuron generates values for f(X) 
and f(X+AX) in accordance With the transfer function. The 
derivative is then generated according to: 

Where 0t is a constant of proportionality. 

Turning to FIG. 4, in a preferred embodiment, an input 
signal Ii” representing the sum of the Weights in a layer is 
supplied to transfer function circuitry 3000 Which generates 
an output signal F(Iin) in accordance With a transfer function. 
The transfer function output signal F(Iin) is supplied to 
derivative generation circuitry 4000 to provide output F‘ 
(It-n). The derivative circuit output F‘ (It-n) is generated by 
biasing the transfer function to create a transfer function 
signal F(Iin+IbL-HS), from Which F(Iin) is subtracted to provide 
F‘ (IL-n). 

The ampli?er embodiment of FIG. 4 uses complementary 
?eld effect transistors T1—T24 to provide output in accor 
dance With a sigmoidal transfer function and its derivative. 
It is possible in other ampli?er embodiments to employ 
other transfer functions such as a gaussian transfer function, 
or other transfer function knoWn in the art. 

In the preferred embodiment of FIG. 4, the neuron trans 
fer function output F(Iin) is generated by supplying IM to 
generate currents I1 and I2 Which When combined together 
provides the sigmoidal transfer function. Thus, Iin is sup 
plied across Rl, to the gate of T1, While the gate of transistor 
T2 is supplied With a reference voltage to generate currents 
I1 and I2 through T1 and T2 respectively. I1 is mirrored 
through T5, to provide a mirrored I1 through T15. This is 
combined With a mirrored I2 provided by T6, thus providing 
the sigmoidal transfer function output F(Iin). Hence, the 
transfer function circuitry 3000 is a transconductance ampli 
?er Which provides a differential pair of transistors T1 and 
T2 constructed to provide currents I1 and I2 from an input 
current Ii”. Mirror circuits constructed using T6 and T15 to 
provide a combined output from the currents I1 and I2 in 
accordance With a sigmoidal transfer function. 

F(Iin+Ibm-S) is generated by providing bias currents of 

2 

to I2 and I1 and combining the result. Bias current source 
Ibias2 provides bias current 

2 . 

Which is mirrored using T17, and combined With I2 provided 
by T8 to form 

12 + [bias I 
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Bias current source Ibias1 provides bias current 

2 . 

Which is mirrored using T10, and combined With I1 provided 
by T7 to generate 

[bias 
1 
1 2 

[bias 
1 
1 2 

is mirrored using T16 and combined With 

12 + [bias 

to form F(Iin+Ibm-S). 
F(Iin+Ibm-S) and F(Iin) are supplied to a subtraction circuit 

formed using transistors T19—T22 to provide F‘ (It-n). F(Iin+ 
lbw-S) is supplied to the gate of T21 and F(Iin) to the gate of 
T22. The current generated by T21 is mirrored by T20 and 
combined With the current generated by T22 to provide F‘ 
(It-n). Hence, the derivative circuitry 4000 has a circuit 
constructed to generate a biased I1 and a biased I2 and to 
combine the biased I1 and biased I2 to provide an output in 
accordance With the transfer function. 

In one embodiment, R2 is about 200 ohms, the reference 
voltage is ground as shoWn in FIG. 4, and Ibiaa is about 50 
nanoamperes. Current sources Imi,1 and Imi,2 may be 
coupled to T13 and T24 through T14 and T23, repsectively, 
to provide a means to control the gain of unbiased and biased 
I1 and I2 and thus the outputs F(Iin) and F‘ (It-n), respectively. 
Embodiments of the present invention may be implemented 
using VLSI circuitry. 

Thus, the preferred embodiment of the present invention 
alloWs generation of the derivative of the neuron transfer 
characteristic in real time, Which may differ from neuron to 
neuron, even on the same VLSI chip. Providing a hardWare 
supplied local derivative for each neuron is more reliable 
and robust, and avoids the issue of processing variations. 

FIG. 5A shoWs simulation data of 2 micron CMOS 
transistors for various sigmoidal characteristic curves. FIG. 
5B shoWs the ideal derivative of the transfer functions of 
FIG. 5A With respect to the input signals. FIG. 5C shoWs 
simulation data of the derivative of the transfer functions of 
FIG. 5A of the derivative circuit of FIG. 4. 
What I claim is: 
1. A neural netWork circuit comprising: 
a) a training netWork comprising: 

(i) a plurality of analog circuits capable of charge 
storage; 

(ii) a plurality of analog transfer function circuits each 
being continuously coupled to at least one of the 
charge storage circuits; 

(iii) a plurality of analog derivative circuits each being 
continuously coupled to one of the plurality of 
transfer function circuits and constructed to continu 
ously generate in real time a derivative of an output 
of the one transfer function circuit; and 

(iv) a Weight update analog circuit for continuously 
updating the charge storage circuits based upon 
output from the plurality of transfer function circuits 
and output from the plurality of derivative circuits; 
and 



US 6,513,023 B1 
9 

b) a validation network comprising: 
(i) a plurality of transfer function circuits each being 

coupled to the plurality of charge storage circuits so 
as to replicate the coupling of the plurality of charge 
storage-to-the plurality of transfer function circuits 
of the training netWork. 

2. The neural netWork circuit of claim 1 Wherein each of 
the plurality of transfer function circuits comprises a 
transconductance arnpli?er having a transfer function con 
structed to provide differential currents I1 and I2 from an 
input current IM and to combine the differential currents to 
provide an output in accordance With the transfer function. 

3. The neural netWork circuit of claim 2 Wherein each of 
the plurality of derivative circuits comprises a circuit con 
structed to generate a biased I1 and a biased I2 and to 
combine the biased I1 and biased I2 to provide an output in 
accordance With the transfer function. 

4. The neural netWork circuit of claim 3 Wherein each of 
the plurality of derivative circuits further comprises a sub 
traction circuit constructed to provide the derivative of the 
transfer function from the biasing and combining circuit and 
the transconductance arnpli?er outputs. 

5. The neural netWork circuit of claim 4 further cornpris 
ing a means to control the amplitude of I1 and I2. 

6. The neural netWork circuit of claim 5 further cornpris 
ing a means to control the amplitude of the biased I1 and the 
biased I2. 

7. The neural netWork circuit of claim 1 Wherein the 
training netWork is constructed to train using back propa 
gation. 

8. The neural netWork circuit of claim 7 further cornpris 
ing a means for generating a plurality of delta weights from 
the plurality of derivative circuit outputs and a plurality of 
error signals 6. 

9. The neural netWork circuit of claim 7 Wherein the 
neural netWork circuit is constructed to train using cascade 
correlation. 

10. The neural netWork circuit of claim 1 Wherein the 
plurality of charge storage circuits cornprise capacitors. 

11. The neural netWork circuit of claim 1 Wherein the 
transfer function is a sigrnoidal transfer function. 

12. A neural netWork circuit comprising: 
a) a plurality of circuits capable of charge storage; 
b) a plurality of circuits each being coupled to at least one 

of the plurality of charge storage circuits and con 
structed to generate an output in accordance With a 
neuron transfer function; 

c) a plurality of circuits each being coupled to one of the 
plurality of neuron transfer function circuits and con 
structed to generate a derivative of the output; 

d) a Weight update circuit for updating the charge storage 
circuits based upon output from the plurality of transfer 
function circuits and output from the plurality of 
derivative circuits; and 

Wherein the neural netWork cornprises separate training 
and validation networks, and Wherein the training net 
Work comprises the plurality of charge storage, neuron 
transfer, and derivative circuits, and Wherein the vali 
dation netWork comprises the plurality of charge stor 
age circuits and further comprises a plurality of neuron 
transfer function circuits each being coupled to the 
plurality of charge storage circuits so as to replicate the 
coupling of the plurality of charge storage circuits-to 
the plurality of neuron transfer function circuits. 

13. The neural netWork circuit of claim 12 Wherein each 
of the plurality of transfer function circuits comprises a 
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transconductance arnpli?er having a transfer function con 
structed to provide differential currents I1 and I2 from an 
input current IM and to combine the differential currents to 
provide an output in accordance With the transfer function. 

14. The neural netWork circuit of claim 13 Wherein each 
of the plurality of derivative circuits comprises a circuit 
constructed to generate a biased I1 and a biased I2 and to 
combine the biased I1 and biased I2 to provide an output in 
accordance With the transfer function. 

15. The neural netWork circuit of claim 14 Wherein each 
of the plurality of derivative circuits further comprises a 
subtraction circuit constructed to provide the derivative of 
the transfer function from the bias and combine circuit and 
the transconductance arnpli?er outputs. 

16. The neural netWork circuit of claim 12 Wherein the 
plurality of charge storage circuits cornprise capacitors. 

17. The neural netWork circuit of claim 12 Wherein the 
transfer function is a sigrnoidal transfer function. 

18. The neural netWork circuit of claim 12 Wherein the 
neural netWork circuit is constructed to train using back 
propagation. 

19. The neural netWork circuit of claim 18 Wherein the 
neural netWork circuit is constructed to train using cascade 
correlation. 

20. A method of signal processing in a neural network 
comprising: 

a) creating a plurality of synaptic Weights by storing 
charge on a plurality of capacitive circuits; 

b) generating a plurality of neuron outputs in accordance 
With a transfer function from the plurality of Weights 
using a plurality of transfer function analog circuits; 

c) continuously generating in real time a derivative of 
each of the plurality of neuron outputs using a plurality 
of derivative circuits each coupled to one of the plu 
rality of transfer function circuits; and 

d) training the neural netWork using a plurality of delta 
Weights generated using the plurality of transfer func 
tion derivatives. 

21. The method of claim 20 Wherein training further 
comprises controlling a learning rate of the plurality of 
Weights using a validation network comprising a plurality of 
transfer functions circuits coupled to the plurality of 
Weights. 

22. The method of claim 21 Wherein controlling the 
learning rate further comprises: 

a) supplying a cross-validation data set to the validation 
netWork; 

b) generating error signals at an output of the validation 
netWork; 

c) comparing the error signals to a threshold value; and 
d) setting the learning rate using a result of the compari 

son. 

23. The method of claim 20 further comprising validating 
test set data using a validation network comprising a plu 
rality of transfer functions circuits coupled to the plurality of 
Weights. 

24. The method of claim 23 Wherein validating the test set 
data and training the neural netWork are performed simul 
taneously. 

25. The method of claim 20 further comprising generating 
a second plurality of neuron outputs in accordance With the 
transfer function by sharing the plurality of Weights and 
using a second plurality of transfer function circuits. 

26. The method of claim 20 further comprising using a 
pseudo inverse technique to calculate an initial value for the 
plurality of Weights. 
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27. The method of claim 20 wherein training further 
comprises adding a plurality of neW hidden neurons to 
previously formed neurons based on the learning rate to 
generate a plurality of neuron outputs in accordance With the 
transfer function from a plurality of neW hidden Weights 
using a plurality of neW transfer function circuits. 

28. The method of claim 27 further comprising generating 
a derivative of each of the plurality of neW hidden neuron 
outputs. 

29. The method of claim 20 Wherein generating a plurality 
of neuron outputs in accordance With a transfer function and 
generating a derivative of each of the plurality of neuron 
outputs further comprises using ?eld effect transistors. 

30. The method of claim 20 Wherein generating a plurality 
of neuron outputs comprises generating differential output 
currents I1 and I2 for each of the plurality of neuron outputs, 
and Wherein generating a derivative of each of the plurality 
of neuron outputs further comprises providing biases to each 
of I1 and I2, and Wherein generating a derivative of each of 
the plurality of neuron comprises using I1 and I2 and the 
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biased I1 and biased I2 to provide an output in accordance 
With the transfer function. 

31. A method for signal processing in a neural netWork 
circuit comprising: 

a) training a plurality of synaptic Weights by storing 
charge on a plurality of capacitive circuits using a 
training netWork having a plurality of neurons each 
capable of providing outputs in accordance With a 
transfer function; 

b) sharing the plurality of Weights With a validating 
netWork having a second plurality of neurons each 
capable of providing outputs in accordance With the 
transfer function; and 

c) performing at least one of cross-validation testing or 
validation testing using the validation netWork. 

32. The method of claim 31 Wherein training and per 
forming the at least one of cross-validation testing or the 
validating testing are performed simultaneously. 

* * * * * 


